
Jurnal Teknologi Maklumat & Multimedia 2(2005): 165-178

Evaluation of Gauss Rules with a Centralised
Dynamic Load Balancing Technique

in Parallel Computing Systems

FESTUS OMONIGHO IYUKE & BAHARI IDRUS

ABSTRACT

Evaluation of Gauss rules with a centralised dynamic load balancing technique
under PVM-based environment in approximating one-dimensional definite
integrals on parallel computing systems is described. Gauss rules are
normally applied in pairs, so that both an approximation to the integral and
an estimate of the error in the approximation can be evaluated together. It
is usual to subdivide the range of integration into n subintervals, and these
rules are applied separately to each of these subintervals. The aim is to
satisfy the accuracy requirement (this is assured if the sum of the estimated
absolute errors across the n subintervals is less than absolute accuracy, ∈)
whilst keeping the number of evaluations of the integrand to a minimum. The
load balancing operation is realised by initialising a centralised pool of task
from which a workload (subintervals) to be performed is distributed to the
various contending slave processors. Besides, the centralised pool of task
technique involved master-slave relationship, where a master processor
engaged in interval decomposition into n subintervals. Subsequently, these
subintervals are distributed to the slave processors to ensure a workload
balanced state is attained. Whenever a slave processor completes its subinterval
computation, the partially approximated results are returned to the master.
By way of reducing the communication overhead, that would have been
associated with the integral evaluation process. The effectiveness of the
approach used in connection with the novel workload management scheme is
demonstrated in the result obtained and the global workload optimisation for
the tested application problems.

ABSTRAK

Kertas ini membincangkan tentang Petua Gauss dengan teknik pengimbangan
muatan dinamik terpusat bagi persekitaran berasaskan PVM dalam
menganggarkan pengamiran tentu satu dimensi pada sistem pengkomputeran
selari. Petua Gauss pada kebiasaannya dilaksanakan secara berpasangan
supaya penganggaran kamiran serta ralat pada penganggaran tersebut

10- Festus Omonigho 4/26/05, 8:58 AM165

166

dapat dinilai bersama. Julat pengamiran dibahagikan kepada n bilangan
sub-selang dengan setiap peraturan dalam petua ini akan dilaksanakan
secara berasingan bagi setiap sub-selang ini. Matlamatnya adalah bagi
memastikan keperluan kejituan dipenuhi (ini dapat ditentukan sekiranya
jumlah anggaran ralat mutlak bagi n sub-selang kurang daripada kejituan
mutlak, ∈), dalam masa yang sama memastikan bilangan penilaian kamiran
berada pada tahap minimum. Operasi pengimbangan muatan dilakukan
dengan memusatkan kumpulan kerja yang mana setiap beban tugas sub-
selang diagihkan kepada pemproses-pemproses kecil (slave processors).
Selain daripada itu, teknik kumpulan kerja berpusat turut melibatkan hubungan
di antara pemproses utama dan beberapa pemproses kecil (master-slave
relationship), yang mana pemproses utama dihuraikan kepada beberapa n
sub-selang. Kemudian, kesemua sub-selang ini akan diagihkan pula kepada
pemproses-pemproses kecil sehingga tahap beban yang seimbang dicapai.
Apabila pemproses kecil selesai melaksanakan pengiraan sub-selang,
sebahagian hasil anggaran dihantar ke pemproses utama. Melalui
pengurangan overhed komunikasi, ini telah diambil kira dalam proses
penilaian pengamiran. Keberkesanan pendekatan yang digunakan bersama
dengan skema pengurusan muatan ditunjukkan dalam dapatan kajian serta
keputusan yang diperolehi melalui beban tugas yang optimum bagi masalah
aplikasi yang diuji.

INTRODUCTION

Gauss rules (Legendre, Laguerre and Hermite) are numerical integration
methods that use the roots of their individual polynomials. It is generally not
suitable for evaluating a function given in a tabular form with equally spaced
intervals. As these points are not evenly spaced, but are chosen to achieve
accuracy in the integral approximations. Gauss rules are differ from the other
numerical integration methods (i.e. Newton-Cotes) in that, the n points are set
to the roots of the Legendre polynomial Pn(x) = 0, where the Pn(x) is the
Legendre polynomial of order n. The advantage of using Gauss’ rules is to
obtain a higher accuracy than the Newton-Cotes integration methods. Gauss
rules have been studied and developed to increase the accuracy of integral
approximations in parallel computing environments. It is among the numerical
integration techniques for approximating definite integral in one-dimension
as in Equation (1), and/or in multiple dimensions to give absolute accuracy,
∈.

I f x dx
a

b

= ()∫ (1)

10- Festus Omonigho 4/26/05, 8:59 AM166

167

The conventional approach to numerical integration is to use a quadrature
rule (or a sequence of quadrature rules) to approximate I, that takes the form
of a weighted sum of integrand evaluation as specified in Equation (2),

I f x dx w f xi i

i

n

a

b

= () ≈ ()
=
∑∫

0

(2)

where w
i
, xi, for all i=0,1,...,n are respectively, the weights and the abscissas

of the Gauss rules. Gauss rules are normally applied in pairs, so that both an
approximation to the integral and an estimate of the error in the approximation
can be calculated. It is usual to subdivide the range of integration [a,b] into
n subintervals, a = x

0
 < x

1
 < x

2
 < ... < x

n
 = b, and apply the Gauss separately

to each of these subintervals. The aim is to satisfy the accuracy requirement
(this is assured if the sum of the estimated absolute errors across the n
subintervals is less than ∈) whilst keeping the number of evaluations of the
integrand to a minimum. However, the accuracy of this rule depends largely
on the range of n equal subintervals used. For an accurate approximation of
a specified integral function would require an infinite number of subintervals
using these Gauss rules.

Parallelism is realised by approximating the integral functions by p
processors through domain decomposition. Decomposing the integral interval
into n subintervals involves master-slave relationship. To achieved improve
performance for the integral evaluation under this parallel application, an
efficient load balancing technique is needed to distribute subinterval in a
judicious manner among various processors. Thus ensures no processors are
overloaded while other processors are idle or lightly loaded. We utilised a
process involving the creation of pool of task with the n subintervals in the
master process. From this pool, subintervals are distributed to the various
slave processors until completion. When a slave processor completes its
subinterval computational process, the partially approximated results are
returned to the master processor, while simultaneously requesting for further
subintervals from the master processor. When all subintervals have been
taken, the master processor sent a completion signal to all slave processors
indicating end of the integral evaluation, then accumulates all partially
approximated results to give the final computed integral values (Iyuke et al.
2004a; Antonis et al. 2004).

Since an effective load balancing scheme requires the knowledge of the
global system state (e.g. workload distribution), but in a parallel computing
system, the global state is swiftly and dynamically changing and it is very
difficult to accurately model the system analytically. Thus, in order to tackle
the load balancing problem in such an environment where state uncertainty

10- Festus Omonigho 4/26/05, 8:59 AM167

168

is unavoidable, we employ a centralised dynamic load balancing approach to
model those state variables that could cause uncertainty in global states
(Kwok & Cheung 2004). The paper is organised as follows. In the next
section, we describe the overview of Gauss rules. The following section
contains the centralised work pool technique involving the master-slave
relationship while the final section discusses the experimental results of the
parallel Gauss rules on parallel and distributed network-based of PVM Linux
workstations.

OVERVIEW OF GAUSSIAN RULES

Gauss rules are based on the individual roots (Legendre, Laguerre and
Hermite) of polynomials that choose its point of evaluation in an optimal,
rather than equally spaced interval like the Newton-Cotes rules (Nakamura
1991). However, these weighting coefficients w

i
, for all i = 1,2,...,n in the

approximation formula are arbitrary, and the nodes x
i
 for all i = 1,2,...,n are

restricted by the fact that they must lie in [a,b] interval of integration. Gauss
rules use the properties of orthogonal polynomials (i.e. functions whose
scalar product is zero) to achieve their accuracy. It is usually evaluated over
an interval -1 and +1; which is exact when applied to any polynomials of
higher degree. Then, the set of Legendre polynomials, a collection {P

0
(x),

P
1
(x),...,P

n
(x),...,} has the following properties:

1. For each n, P
n
(x) is a polynomial of degree n.

2. P x P x dxn() () ,
−∫ =

1

1
0 whenever P(x) is a polynomial of degree less than n.

However, the roots of these polynomials are distinct, since they lie in the
interval [-1, 1] having symmetry with respect to the origin. Therefore, the
nodes x

i
, for all i = 1,2,...,n is needed to produce an integral approximation

formula that gives exact results for any polynomials of degree less than 2n
are the roots of the nth-degree Legendre polynomial as established by the
following.

Suppose x
i
 for all i = 1,2,...,n are the roots of the n

th
 Legendre polynomial

P
n
(x) and for each i=1,2,...,n, the weighting coefficients w

i
 are defined by

w
x x

x x
i

j

i jj
j

n

=
−()
−()=

≠

− ∏∫
1
1

1

1

(3)

If P(x) is any polynomial of degree less than 2n, then

10- Festus Omonigho 4/26/05, 8:59 AM168

169

P x dx w p xi i

i

n

() = ()
=

− ∑∫
1

1

1
(4)

For Equation (4) provides polynomials p of degree at most ≤ n that
interpolates f at the nodes; that is, p xi f xi() ()= for i=0,1,2,...,n. Then, p
will be a good approximation to f, and will be a good approximation to.

f x dx p x dx f x x dx w f xi

i

n

i i

i

n

i

− −
=

−

−
=

∫ ∫ ∑ ∫ ∑() ≈ () = () () = ()
1

1

1

1

0

1

1

1

0

l (5)

where

w x dxi i= ()

−∫ l

1

1

.

Therefore, wi needed for the Gauss rules approximation can be generated
from Equation (5) to give correct values for the integral of every polynomial
of degree at most n (Burden & Faires 2001), but these constants and the roots
of the Legendre, Laguerre and Hermite polynomials are extensively tabulated
in Abramowitz & Stegun (1972). Though, the first two-points (n = 1) of
Gauss quadrature formula can be calculated using Equation (6),

I = f x dx w f x w f x() = ()+ ()−∫ 1

1

0 0 1 1 (6)

where x
0
 and x

1
 are the unknowns two nodes, while w

0
 and w

1
 are the

corresponding weighting coefficients. Then, applying Equation (6) successively
to a constant (f(x) = 1), line (f(x) = x), quadratic (f(x) = x2), and cubic function
(f(x) = x3) would yield the two point Gauss-Legendre formula, whose results
are exact for the integral of any polynomial of degree 3 or less. However, a
higher-point formula can be obtained using Equation (7),

I = f x dx w f xi

i

n

i() ≈ ()−
=

∫ ∑
1

1

0

(7)

where x
i
 are nodes, w

i
 the associated weighting coefficients and n, the number

points in the Gauss rules. The basic problem is to determine x
i
 and the

corresponding weighting functions, w
i
, so as to make the integration formula

exact for f(x) a polynomial of as large a degree as possible.
However, Gauss-Laguerre’s rule is meant for numerical integration over

semi-infinite intervals, (i.e. one limit finite and the other infinite), it is
convenient to use a weight function, w

i
 for all i = 0,1,2,...,n, to ensure

10- Festus Omonigho 4/26/05, 8:59 AM169

170

convergence of the integral wi f(x
i
). An integral equation with this semi-

infinite interval is evaluated using the Gauss-Laguerre’s rule with a weight
function given by this expression w(x) = e–x. Accordingly, the Gauss quadrature
rule associated with integration process in the range of (0,∞) is given as in
Equation (8),

e f x dx w f xx
i

i

n

i
−∞

=
∫ ∑() ≈ ()

0
0

(8)

Therefore, when the semi-infinite integral has an arbitrary lower limit, a, the
variable in Equation (8) could be changed to x + a, such that Equation (8)
becomes,

e f x dx e w f x ax a
i i

i

n
−∞ −

=
∫ ∑() ≈ +()

0
0

.

For numerical integration over infinite intervals, it is convenient to use a
weight function w

i
, for all i = 0,1,2,...,n, which guarantees the convergence

of the integral w
i
 f(x

i
). Therefore, an integral function with this infinite

interval is evaluated using the Gauss-Hermite’s rule with a weight function
given by w(x) = e–x2. This method is similar to Gauss-Laguerre integration
process except its weighting coefficients (w

i
) and abscissas (x

i
) are derived

from Hermite polynomials H
n
(x) (Ralston 1964). The Gauss quadrature

formula associated with integration in this range (-∞, +∞) is given as,

e f x dx w f xx

i
i

n

i
−

∞

+ ∞

=
∫ ∑() ≈ ()2

1
 -

The best numerical estimates of the integral function are obtained by picking
optimal abscissas, x

i
 at which to evaluate the function f(x). The Gauss

quadrature is usually optimal because it fits all polynomials up to degree 2n
exactly, except for Gauss-Laguerre’s rule, which is slightly less optimal fits.
Actually, the accuracy of the Gauss integration techniques depends on the
number of the abscissas (points) at which the ordinates (x

i
) are evaluated, and

the nature of the integrand. Since these nodes and weighting functions are
mostly irrational numbers, it is used in algorithms for automatic computations
to give a better accuracy with fewer functions evaluations.

Gauss rules are somewhat more difficult to apply than Newton-Cotes
rules and Romberg method due to weights and nodes normally derived for

10- Festus Omonigho 4/26/05, 9:00 AM170

171

specific interval of integration [-1,1]. To apply this rule to a given interval of
integration [a,b], it becomes imperative to transform these variables into
standard interval for which nodes and weights have been tabulated. For
example, an integral to be evaluated is given by Equation (9),

f y dy
a

b ()∫ (9)

Therefore, a change in variable is accomplished by making

x
y a b

b a
=

− +()
−

2
(10)

or y
b a x a b

=
−() + +()

2
(11)

and dy
b a

=
−()
2

This permits Gaussian rule to be applied to any interval [a,b], since

f y dy f
b a x a b b a

dx
a

b () =
−() + +()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫ ∫− 2 21

1

(12)

It could as well be written as

I
b a

f
b a x a b

dx=
−() −() + +()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−∫2 21

1

(13)

Thus,

I
b a

w f
b a x a b

i

i

n

=
−() −() + +()⎛

⎝
⎜

⎞

⎠
⎟

=
∑2 2

0

(14)

Then, applying Equation (14), we obtain the integral of a function
between the limits x = a and x = b (Iyuke 2004; Kim et al. 2003; Burden &
Faires 2001; Cheney & Kincaid 2002; Rojiani 1996).

10- Festus Omonigho 4/26/05, 9:00 AM171

172

PARALLEL COMPUTING FRAMEWORKS FOR CENTRALISED TECHNIQUE

Recent developments in networking have turned computer networks into
attractive platforms for parallel computing bringing in a new concept of
networked distributed computing (Clark & Skarmeas 1996). Distributed
computing allows the network to be viewed as a multi-processor (virtual)
parallel computer with the obvious benefits of its scalable cumulative power,
more efficient use of existing resources, and more effective system
management. These parallel computing frameworks are, as a rule, oriented
towards execution of a single job on a network of workstations in parallel
using Parallel Virtual Machine (PVM).

PVM is a software package that permits a heterogeneous collection of
computers hooked together by a network to be used as a single large parallel
computer. However, it is more oriented towards networks workstations. It
provides an abstraction of a processor pool. In fact, each processor in the pool
is a separate network node. This PVM system provides more high level
support for the programmer. Thus, the PVM routines are used to start/stop a
process or send messages between processes. The parallel-based
implementation of PVM consists of a PVM daemon, responsible for managing
processes on a network node, and a library, containing PVM communication
and process management functions. PVM concealed mapping between processes
and processors, perform implicit synchronisation or communication between
parallel processes (Iyuke et al. 2005). Such frameworks consist of a
programming language support and a runtime support. Programming language
support usually extends an existing programming language with constructs
required to write parallel programs, e.g. parallel loops, spawning of parallel
processes, synchronisation and communication functions. Runtime support is
responsible for parallel execution of a program on a computer network. It
deals with the distribution of workloads between nodes, faults of separate
machines, migration of processes, runtime communication and synchronisation.

Therefore, the implementation of these parallel Gauss algorithms with a
centralised dynamic load balancing involves a work pool technique under
master-slave relationship. The potential parallelism within the work pool
algorithm is entirely dependent on the particular Gauss rules and integral
functions being evaluated. Therefore, the centralised load balancing system
addresses the issue of approximating the integral of a continuous function
using the Gauss rules. The approximation of the integral value is done by
subdividing the interval a to b into a fixed number of subintervals, then the
area of each subinterval is approximated using the Gauss rules. However, the
master processor employs coordinator process and any of the independent
worker (slave) processes accessible to its own local memory. Thus, the
master process implements a pool of task technique, where each worker
(slave) is given a task (subinterval) to compute its area, then collects and
detects termination. Each worker first receives these subintervals from the

10- Festus Omonigho 4/26/05, 9:00 AM172

173

master processor (coordinator). The worker then computes its area using the
parallel Gauss rule and sends it back to the coordinator. Thus, the master
processor initiates the computation and waits to receive the area from every
worker and prints the results. The send and receive statements used by the
coordinator and worker are message-passing primitives. A send statement
packages up a message and transmits it to another process, while a receive
statement waits for a message passing from process, and then stores it in a
local memory for onward processing (Elbaz & Elkihel 2005; Liu et al. 2005;
Cybenko 1989).

This centralised master uses some distributed strategies (sender-initiated,
receiver-initiated and symmetrically-initiated) to transfer subintervals to the
various slave processors (Finkel & Manber 1987; Lüling & Monien 1993).
To ensure a workload balanced system and equally allows the master
processor to make workload placement decisions using the above-mentioned
strategies, policies like location, information, transfer and selection are also
used to transfer the subintervals (Chao-Yang & Mark 2001; Zaki et al. 1997;
Krueger & Shivaratri 1994; Kunz 1991). These policies, specifically the
location and information policies play vital roles in the transferring of
messages as discussed below.
• Location policy: The objective of this policy is to find a suitable transfer

partner for a processor, once the transfer policy has decided that the
processor is a heavily-loaded state or lightly-loaded one. Common
location policies include random selection, dynamic selection, and state
polling.

• Information policy: This policy determines when the information about
the state of other processors should be collected, from where it has to be
collected, and what information is to be collected. Common approaches
are no exchange of states, state probing (or demand-driven) in process of
load balancing, periodic exchange (information gathered periodically),
state-change broadcasting, and conditional and limited multicasting (Kwok
& Cheung 2004).

• Transfer policy: A transfer policy determines whether a machine is in a
suitable state to participate in a task transfer, either as a sender or a
receiver. For example, a heavily loaded processor could try to start
process migration when its load index exceeds a certain threshold.

• Selection policy: This policy determines which task should be transferred.
Once the transfer policy decides that a processor is in a heavily loaded
state, the selection policy selects a task for transferring. Selection
policies can be categorised into two policies; preemptive and non-
preemptive. A preemptive policy selects a partially executed task. As
such, a preemptive policy should also transfer the task state that can be
very large or complex. Thus, transferring operation is expensive. A non-
preemptive policy selects only tasks that have not begun execution.
Hence, it does not require transferring the state of task.

10- Festus Omonigho 4/26/05, 9:00 AM173

174

However, the distribution of these n subintervals on the available slave
processors in the virtual configuration by the master processor helps realised
the load balancing operations. The slave processors perform load balancing/
integration evaluation in a cyclical format; request a subinterval, process it,
and returned the partially approximated result to the master processor, while
simultaneously requesting further task from the master processor in order to
reduce the communication overhead involved. The slave processors receive
subintervals on a continual basis from the work pool in the master processor
until the termination is reached.

When all subintervals have been taken, the master sends a completion
signal to all slave processors indicating end of the computation. The master
processor sums up the partially approximated results from the dedicated slave
processors to give the final approximated result of the integral computation.
Basically, the communication is between the master and the various slave
processors in the Virtual Machine (host of computers). A workload balanced
is attained; when the master processor has processed all of the subintervals
and no processors remained idle during the integral function approximation
(Stadtherr 2004; Charcranoon et al. 2004; Wilkinson & Allen 1999; Foster
1994).

RESULTS AND DISCUSSIONS

The performance of an algorithm on parallel computing systems is not
dependent only on the problem characteristics and the number of processors.
It does depend on how processors interact with each other, as determined
both by a physical architecture in hardware and virtual architecture in
software. The physical architecture used in the experiment described is a
completely connected network-based system (mesh topology). The parallel
architecture used in the experimentation consists of 17 homogeneous Red
Hat Linux 7.2 workstations, Intel Pentium 4 processors, 20Gb HDD, CPU

speed of 1.6 MHz, 256Mb of memory, connected by Fast Ethernet (10/100
Mbps) network using PVM-based parallel programming software.

The performance of the approach evaluation is given in terms of speedup
and efficiency. Therefore, speedup is defined as the ratio of the sequential
execution time to the parallel execution time. While the efficiency is defined
as the ratio of the parallel speedup to the number of processors used. As
performance evaluation of a centralised dynamic load balancing strategy is
assessed with respect to speedup. The speedup is preferred performance
objective in comparing a strategies performance across several sets of parallel
computers. Therefore, the results obtained for the Gauss rule technique, gave
an impressive sublinear speedup when compared to the ideal case and high
efficiency values of 91% for Gauss-Legendre, 89% for Gauss-Laguerre and
85% for the Gauss-Hermite rules respectively. Although, the Gauss-Legendre’s

10- Festus Omonigho 4/26/05, 9:00 AM174

175

rule performance is due to the closed intervals of integration as compared to
Gauss-Laguerre and Gauss-Hermite rules whose intervals of integration are
infinite at one or both ends with same interval of integration. However, this
competitiveness in terms of the performance evaluation or accuracy was due
to subdivision of integration interval into number of segments of equal
widths. One can generalised that the Gauss-Legendre’s rule gave an appreciable
accuracy than the Gauss-Laguerre and Gauss-Hermite rules.

These performances obtained indicate the usefulness of PVM-based
application in approximating integral functions problems. It also showed the
degree of utilisation of individual workstations (processors) in the parallel
computing systems. Besides, these results were achieved because each
processor gets an equal number of subintervals to compute, showing the
workload was evenly distributed on the available processors (workload
balanced).

The workloads among the processors were balanced; as a result poor
speedup and efficiency values were obtained. This is because some processors
receive less workload (underloaded) while other processors receive too much
workload (overloaded), as a result of the underloaded processors being held
at synchronising points waiting for the other processors to complete evaluation.
Thus, the load management system would not be capable of balancing the
workload among processors to achieve a high quality results, because it adds
an almost constant overhead to all scheduling or mapping strategies.

Consequently, this centralised technique using master-slave relationship
creditably exhibits sublinear speedup and parallel efficiency curves, as shown
in Figures 1 and 2. It tends to decrease as the number of processors increases,
according to Amdahl’s law analogy (Foster 1994). Centralized algorithm
using work pool technique should be preferred in the evaluation of load
management schemes in parallel applications in network of workstations.

The Gauss numerical integration techniques have some useful industrial
applications in the areas of Science and Engineering. This technique may be
used in the evaluation of the force exerted on a dam constructed across a river
to generate hydroelectric power (Schilling & Harris 2000). Also, the technique
could equally be used in the approximation of flow rate/seconds of fluid
through a circular pipe with some mathematical simplifications (Rojiani
1999).

CONCLUSION

PVM-based parallel application involving load management techniques have
been used to effectively solve the integral functions problems on the network
of workstations. However, the applications running this approach is essentially
master-slave structured, which has been described as a valid cooperation
paradigm for parallel and distributed applications. The centralised technique

10- Festus Omonigho 4/26/05, 9:00 AM175

176

operates on global subintervals distributed on all processing units. The
overlap communication and computation by the use of synchronous and
asynchronous blocking communication functions provided by PVM. This
enables the load-adjusting scheme to substantially reduced out-of-work idle
states in the various processors while reducing the communication needs in
the integral evaluation. It helps achieve an even workload balance, thereby
obtaining a high speedup and efficiency values. Equally work towards
maintaining non-empty local processor and well-balanced global workload
distribution. Thus, the centralised technique provides a large reduction in
network communication requirements, reduction in communication bottlenecks
and load imbalances that would have be apparent in the evaluation approach.

REFERENCES

Abramowitz, M. & Stegun, A. 1972. Handbook of mathematical functions. New York,
USA: Dover.

Antonis, K., Garofalakis, J., Mourfos, I. & Spirakis, P. 2004. A hierarchical adaptive
distributedalgorithm for load balancing. Journal of Parallel and Distributed
Computing 64(1): 151-162.

FIGURE 2. Efficiency curves for Gauss rules

FIGURE 1. Speedup curves for Gauss rules

Number of Processors

Number of Processors

Sp
ee

du
p

E
ff

ic
ie

nc
y

10- Festus Omonigho 4/26/05, 9:00 AM176

177

Burden, R. L. & Faires, D. J. 2001. Numerical analysis. 7th Ed. Pacific Grove, USA:
Brooks/Cole.

Chao-Yang, G. & Mark, A. S. 2001. Parallel interval-Newton using message passing:
dynamic load balancing strategies. Proceedings of the ACM/IEEE Conference
on Supercomputing, 10-16 November. Colorado, USA, 23.

Charcranoon, S., Robertazzi, T. G. & Luryi, S. 2004. Load sequencing for a parallel
processingutility. Journal of Parallel and Distributed Computing 64(1): 29-35.

Cheney, W. & Kincaid, D. 2002. Numerical analysis: mathematics of scientific
computing. 3rd Ed. Pacific Grove, USA: Brooks/Cole.

Clark, K. L & Skarmeas, N. 1996. Process oriented programming for agent based
network management. (online). http://citeseer.ist.psu.edu/skarmeas96process.html
(25 April 2005).

Cybenko, G. 1989. Dynamic load balancing for distributed memory multiprocessors.
Journal ofParallel and Distributed Computing 7(2): 279-301.

Elbaz, D. & Elkihel, M. 2005. Load balancing methods and parallel dynamic
programming algorithm using dominance technique applied to the 0-1 knapsack
problem. Journal of Parallel and Distributed Computing 65(1): 78-84.

Finkel, R. & Manber, U. 1987. A distributed implementation of backtracking. ACM
Transactions on Programming Languages and Systems 9(2): 235-256.

Foster, I. 1994. Designing and building parallel programs: concepts and tools for
parallel software engineering. Reading, USA: Addison Wesley.

Iyuke, F. O. 2004. Implementation of dynamic load balancing for numerical integration
methods on parallel computing systems. Masters Thesis. Universiti Kebangsaan
Malaysia, Bangi, Malaysia.

Iyuke, F. O., Abdul, R. A. & Bahari, I. 2004. Parallel strategy of implementing
composite Newton-Cotes rules using message passing on parallel computing
systems. Proceedings of the 2004 Knowledge Management International
Conference & Exhibition, 14-15 February. Penang, Malaysia, 486-491.

Iyuke, F. O., Abdul, R. A. & Bahari, I. 2005. Comparison evaluation of Romberg and
Legendre’s integration methods with a centralized dynamic load balancing
technique in parallel computing systems. Proceedings of the National Seminar
on Computational & Experimental Mechanics, 17-18 May. Bangi, Malaysia, 37-
44.

Kim, K., Cools, R. & Ixaru, L. G. 2003. Extended quadrature rules for oscillatory
integrand. Applied Numerical Mathematics 46(1): 59-73.

Krueger, P. & Shivaratri, N. G. 1994. Adaptive location policies for global scheduling.
IEEE Transactions on Software Engineering 20(6): 432-444.

Kunz, T. 1991. The influence of different workload descriptions on a heuristic load
balancing scheme. IEEE Transactions on Software Engineering 17(7): 725-730.

Kwok, Y. & Cheung, L. 2004. A new fuzzy-decision based load balancing system for
distributedobject computing. Journal of Parallel and Distributed Computing
64(2): 238-253.

Liu, G. Q., Poh, K. L. & Xie, M. 2005. Iterative list scheduling for heterogeneous
computing. Journal of Parallel and Distributed Computing 65(5): 654-665.

10- Festus Omonigho 4/26/05, 9:00 AM177

178

Lüling, R. & Monien, B. 1993. A dynamic distributed load sharing algorithm with
provable good performance. Proceedings of the 5th Annual ACM Symposium on
Parallel Algorithms and Architectures, 30 June - 2 July. Velen, Germany, 164-
173.

Nakamura, S. 1991. Applied numerical methods with software. New Jersey, USA:
Prentice Hall.

Ralston, A. 1964. A first course in numerical analysis. Japan: McGraw Hill.
Rojiani, K. B. 1996. Programming in C with numerical methods for engineers. New

Jersey: Prentice-Hall.
Schilling, R. & Harris, S. 2000. Applied numerical methods for engineers using

matlab and C. Pacific Grove, USA: Brooks/Cole.
Stadtherr, H. 2004. Scheduling interval orders with communication delays in parallel.

Journal ofParallel and Distributed Computing 64(1): 1-15.
Wilkinson, B. & Allen, M. 1999. Parallel programming: techniques and applications

using networked workstations and parallel computers. New Jersey, USA: Prentice
Hall.

Zaki, M. J., Li, W. & Parthasarathy, S. 1997. Customized Dynamic Load Balancing
for a Network of Workstations. Journal of Parallel and Distributed Computing
43(2): 156-162.

Festus Omonigho Iyuke
Faculty of Information Technology
Universiti Tun Abdul Razak (UNITAR)
47301 Kelana Jaya
Selangor Darul Ehsan
e-mail: festus@unitar.edu.my

Bahari Idrus
Faculty of Information Science and Technology
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor Darul Ehsan
e-mail: bahari@ftsm.ukm.my

10- Festus Omonigho 4/26/05, 9:00 AM178

